References

Abbas, K., Abbasi, A., Dong, S., Niu, L., Yu, L., Chen, B., … Hasan, Q. (2021). Application of network link prediction in drug discovery. BMC Bioinformatics, 22.
Abboud, R., Ceylan.Ismail .Ilkan, Grohe, M., & Lukasiewicz, T. (2020). The surprising power of graph neural networks with random node initialization. ArXiv, abs/2010.01179.
Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the web. Soc. Networks, 25, 211–230.
Arvind, V., Köbler, J., Rattan, G., & Verbitsky, O. (2015). On the power of color refinement. In International symposium on fundamentals of computation theory.
Backstrom, L., & Leskovec, J. (2010). Supervised random walks: Predicting and recommending links in social networks. In Web search and data mining.
Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. CoRR, abs/1409.0473.
Balazevic, I., Allen, C., & Hospedales, T. M. (2019). TuckER: Tensor factorization for knowledge graph completion. ArXiv, abs/1901.09590.
Balcilar, M., Héroux, P., Gaüzère, B., Vasseur, P., Adam, S., & Honeine, P. (2021). Breaking the limits of message passing graph neural networks. In International conference on machine learning.
Bengio, Y., Courville, A. C., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 1798–1828.
Berg, R. van den, Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. arXiv Preprint arXiv:1706.02263.
Bordes, A., Usunier, N., García-Durán, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for modeling multi-relational data. In NIPS.
Bronstein, M. M., Bruna, J., Cohen, T., & Veličković, P. (2021). Geometric deep learning: Grids, groups, graphs, geodesics, and gauges. ArXiv, abs/2104.13478.
Chen, Y., Mishra, P., Franceschi, L., Minervini, P., Stenetorp, P., & Riedel, S. (2022). ReFactorGNNs: Revisiting factorisation-based models from a message-passing perspective. ArXiv, abs/2207.09980.
Colizza, V., Barrat, A., Barthelemy, M., & Vespignani, A. (2005). Prediction and predictability of global epidemics: The role of the airline transportation network. Bulletin of the American Physical Society, 2015.
Cui, Z., Henrickson, K. C., Ke, R., & Wang, Y. (2018). Traffic graph convolutional recurrent neural network: A deep learning framework for network-scale traffic learning and forecasting. IEEE Transactions on Intelligent Transportation Systems, 21, 4883–4894.
Daud, N. N., Ab Hamid, S. H., Saadoon, M., Sahran, F., & Anuar, N. B. (2020). Applications of link prediction in social networks: A review. Journal of Network and Computer Applications, 166, 102716.
Degraeve, V., Vandewiele, G., Ongenae, F., & Hoecke, S. van. (2022). R-GCN: The r could stand for random. ArXiv, abs/2203.02424.
Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester, T., Perez, L., … Velickovic, P. (2021). ETA prediction with graph neural networks in google maps. In Proceedings of the 30th ACM international conference on information & knowledge management (pp. 3767–3776). New York, NY, USA: Association for Computing Machinery. http://doi.org/10.1145/3459637.3481916
Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio, Y., & Bresson, X. (2020). Benchmarking graph neural networks. arXiv Preprint arXiv:2003.00982.
Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., & Bresson, X. (2022). Graph neural networks with learnable structural and positional representations. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=wTTjnvGphYj
Egressy, B., & Wattenhofer, R. (2022). Graph neural networks with precomputed node features. ArXiv, abs/2206.00637.
Fang, X., Huang, J., Wang, F., Zeng, L., Liang, H., & Wang, H. (2020). ConSTGAT: Contextual spatial-temporal graph attention network for travel time estimation at baidu maps. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
Feng, J., Chen, Y., Li, F., Sarkar, A., & Zhang, M. (2022). How powerful are k-hop message passing graph neural networks. In A. H. Oh, A. Agarwal, D. Belgrave, & K. Cho (Eds.), Advances in neural information processing systems. Retrieved from https://openreview.net/forum?id=nN3aVRQsxGd
Galkin, M., Berrendorf, M., & Hoyt, C. T. (2022). An open challenge for inductive link prediction on knowledge graphs. ArXiv, abs/2203.01520.
Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for quantum chemistry. In Proceedings of the 34th international conference on machine learning - volume 70 (pp. 1263–1272). Sydney, NSW, Australia: JMLR.org.
Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Hamaguchi, T., Oiwa, H., Shimbo, M., & Matsumoto, Y. (2017). Knowledge transfer for out-of-knowledge-base entities : A graph neural network approach. ArXiv, abs/1706.05674.
Hamilton, W. L., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In NIPS.
Hasan, M. A., Chaoji, V., Salem, S., & Zaki, M. J. (2006). Link prediction using supervised learning. In.
He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020). LightGCN: Simplifying and powering graph convolution network for recommendation. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.
He, Y., Wang, Z., Zhang, P., Tu, Z., & Ren, Z. (2020). VN network: Embedding newly emerging entities with virtual neighbors. Proceedings of the 29th ACM International Conference on Information & Knowledge Management.
Huang, Z., Li, X., & Chen, H. (2005). Link prediction approach to collaborative filtering. In Proceedings of the 5th ACM/IEEE-CS joint conference on digital libraries (pp. 141–142).
Islam, K., Aridhi, S., & Smaïl-Tabbone, M. (2020). A comparative study of similarity-based and GNN-based link prediction approaches. ArXiv, abs/2008.08879.
Jeh, G., & Widom, J. (2002). SimRank: A measure of structural-context similarity. Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Jiang, W. (2022). Bike sharing usage prediction with deep learning: A survey. Neural Computing & Applications, 34, 15369–15385.
Jiang, W., & Luo, J. (2021). Graph neural network for traffic forecasting: A survey. Expert Syst. Appl., 207, 117921.
Kamp, C., Moslonka-Lefebvre, M., & Alizon, S. (2013). Epidemic spread on weighted networks. PLoS Computational Biology, 9.
Kazemi, S. M., & Poole, D. L. (2018). SimplE embedding for link prediction in knowledge graphs. ArXiv, abs/1802.04868.
Kiefer, S., Schweitzer, P., & Selman, E. (2015). Graphs identified by logics with counting. In International symposium on mathematical foundations of computer science.
Kipf, T., & Welling, M. (2016). Variational graph auto-encoders. ArXiv, abs/1611.07308.
Kipf, T., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. ArXiv, abs/1609.02907.
Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., & Tossou, P. (2021). Rethinking graph transformers with spectral attention. Advances in Neural Information Processing Systems, 34, 21618–21629.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems (Vol. 25). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
Leman, A., & Weisfeiler, B. (1968). A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9), 12–16.
Leskovec, J., Huttenlocher, D. P., & Kleinberg, J. M. (2010). Predicting positive and negative links in online social networks. ArXiv, abs/1003.2429.
Li, P., Wang, Y., Wang, H., & Leskovec, J. (2020). Distance encoding: Design provably more powerful neural networks for graph representation learning. Advances in Neural Information Processing Systems, 33, 4465–4478.
Liben-Nowell, D., & Kleinberg, J. M. (2007). The link-prediction problem for social networks. J. Assoc. Inf. Sci. Technol., 58, 1019–1031.
Lu, L., & Zhou, T. (2010). Link prediction in complex networks: A survey. ArXiv, abs/1010.0725.
Ma, Y., Guo, Z., Ren, Z., Tang, J., & Yin, D. (2020). Streaming graph neural networks. In Proceedings of the 43rd international ACM SIGIR conference on research and development in information retrieval (pp. 719–728). New York, NY, USA: Association for Computing Machinery. http://doi.org/10.1145/3397271.3401092
MacLean, F. (2021). Knowledge graphs and their applications in drug discovery. Expert Opinion on Drug Discovery, 16(9), 1057–1069.
Maron, H., Ben-Hamu, H., Serviansky, H., & Lipman, Y. (2019). Provably powerful graph networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 32). Curran Associates, Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. (2013). Efficient estimation of word representations in vector space. In ICLR.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. ArXiv, abs/1310.4546.
Morris, C., Fey, M., & Kriege, N. (2021). The power of the weisfeiler-leman algorithm for machine learning with graphs. In Z.-H. Zhou (Ed.), Proceedings of the thirtieth international joint conference on artificial intelligence, IJCAI-21 (pp. 4543–4550). International Joint Conferences on Artificial Intelligence Organization. http://doi.org/10.24963/ijcai.2021/618
Morris, C., Lipman, Y., Maron, H., Rieck, B., Kriege, N. M., Grohe, M., … Borgwardt, K. (2021). Weisfeiler and leman go machine learning: The story so far. Retrieved from https://arxiv.org/abs/2112.09992
Mutlu, E. C., Oghaz, T. A., Rajabi, A., & Garibay, I. (2020). Review on learning and extracting graph features for link prediction. Mach. Learn. Knowl. Extr., 2, 672–704.
Nickel, M., Rosasco, L., & Poggio, T. A. (2016). Holographic embeddings of knowledge graphs. In AAAI.
Nickel, M., Tresp, V., & Kriegel, H.-P. (2011). A three-way model for collective learning on multi-relational data. In ICML.
Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Popescul, A., & Ungar, L. H. (2003). Statistical relational learning for link prediction. In IJCAI workshop on learning statistical models from relational data (Vol. 2003).
Postavaru, S., Tsitsulin, A., Almeida, F., Tian, Y., Lattanzi, S., & Perozzi, B. (2020). InstantEmbedding: Efficient local node representations. ArXiv, abs/2010.06992.
Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., & Tang, J. (2018). Network embedding as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.
Radosavovic, I., Johnson, J., Xie, S., Lo, W.-Y., & Dollár, P. (2019). On network design spaces for visual recognition. Retrieved from https://arxiv.org/abs/1905.13214
Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., & Beaini, D. (2022). Recipe for a General, Powerful, Scalable Graph Transformer. Advances in Neural Information Processing Systems, 35.
Sadeghi, A., Malik, H. A., Collarana, D., & Lehmann, J. (2021). Relational pattern benchmarking on the knowledge graph link prediction task. In NeurIPS datasets and benchmarks.
Sarkar, P., Chakrabarti, D., & Moore, A. W. (2011). Theoretical justification of popular link prediction heuristics. In International joint conference on artificial intelligence.
Sato, R., Yamada, M., & Kashima, H. (2020). Random features strengthen graph neural networks. In SDM.
Schlichtkrull, M., Kipf, T., Bloem, P., Berg, R. van den, Titov, I., & Welling, M. (2018). Modeling relational data with graph convolutional networks. In ESWC.
Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Collective classification in network data. AI Magazine, 29(3), 93. http://doi.org/10.1609/aimag.v29i3.2157
So, M. K. P., Chu, A. M. Y., Tiwari, A., & Chan, J. N. L. (2020). On topological properties of COVID-19: Predicting and controling pandemic risk with network statistics. medRxiv.
Sun, Z., Deng, Z., Nie, J.-Y., & Tang, J. (2018). RotatE: Knowledge graph embedding by relational rotation in complex space. ArXiv, abs/1902.10197.
Talasu, N., Jonnalagadda, A., Pillai, S. S. A., & Rahul, J. (2017). A link prediction based approach for recommendation systems. In 2017 international conference on advances in computing, communications and informatics (ICACCI) (pp. 2059–2062). IEEE.
Tang, J., Qu, M., & Mei, Q. (2015). PTE: Predictive text embedding through large-scale heterogeneous text networks. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). LINE: Large-scale information network embedding. Proceedings of the 24th International Conference on World Wide Web.
Taskar, B., Wong, M. F., Abbeel, P., & Koller, D. (2003). Link prediction in relational data. In NIPS.
Teru, K. K., Denis, E., & Hamilton, W. L. (2020). Inductive relation prediction by subgraph reasoning. In ICML.
Trouillon, T., Dance, C. R., Gaussier, Éric, Welbl, J., Riedel, S., & Bouchard, G. (2017). Knowledge graph completion via complex tensor factorization. J. Mach. Learn. Res., 18, 130:1–130:38.
Vashishth, S., Sanyal, S., Nitin, V., & Talukdar, P. (2020). Composition-based multi-relational graph convolutional networks. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=BylA_C4tPr
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30.
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio’, P., & Bengio, Y. (2018). Graph attention networks. ArXiv, abs/1710.10903.
Veličković, P. (2022). Message passing all the way up. Retrieved from https://arxiv.org/abs/2202.11097
Wang, D., Zhang, J., Cao, W., Li, J., & Zheng, Y. (2018). When will you arrive? Estimating travel time based on deep neural networks. In AAAI conference on artificial intelligence.
Wang, H., Yin, H., Zhang, M., & Li, P. (2022). Equivariant and stable positional encoding for more powerful graph neural networks. In International conference on learning representations.
Wang, P., Han, J., Li, C., & Pan, R. (2019). Logic attention based neighborhood aggregation for inductive knowledge graph embedding. In AAAI.
Wang, X., He, X., Cao, Y., Liu, M., & Chua, T.-S. (2019). KGAT: Knowledge graph attention network for recommendation. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
Wang, Z., Zhao, H., & Shi, C. (2022). Profiling the design space for graph neural networks based collaborative filtering. Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining.
Wu, F., Zhang, T., Souza, A. H. de, Fifty, C., Yu, T., & Weinberger, K. Q. (2019). Simplifying graph convolutional networks. ArXiv, abs/1902.07153.
Xie, Y., Qiu, J., Yu, W., Feng, X., Chen, Y., & Tang, J. (2021). NetMF+: Network embedding based on fast and effective single-pass randomized matrix factorization. ArXiv, abs/2110.12782.
Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural networks? In International conference on learning representations. Retrieved from https://openreview.net/forum?id=ryGs6iA5Km
Yang, B., Yih, W., He, X., Gao, J., & Deng, L. (2015). Embedding entities and relations for learning and inference in knowledge bases. CoRR, abs/1412.6575.
Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., … Li, Z. J. (2018). Deep multi-view spatial-temporal network for taxi demand prediction. In AAAI conference on artificial intelligence.
Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., … Liu, T.-Y. (2021). Do transformers really perform bad for graph representation? In Neural information processing systems.
Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018). Graph convolutional neural networks for web-scale recommender systems. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
You, J., Du, T., & Leskovec, J. (2022). ROLAND: Graph learning framework for dynamic graphs. In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and data mining (pp. 2358–2366).
You, J., Ying, R., & Leskovec, J. (2019). Position-aware graph neural networks. In International conference on machine learning (pp. 7134–7143). PMLR.
You, J., Ying, R., & Leskovec, J. (2020). Design space for graph neural networks. In NeurIPS.
Zhang, M., & Chen, Y. (2017). Weisfeiler-lehman neural machine for link prediction. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks. ArXiv, abs/1802.09691.
Zhang, M., & Chen, Y. (2020). Inductive matrix completion based on graph neural networks. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=ByxxgCEYDS
Zhang, M., Li, P., Xia, Y., Wang, K., & Jin, L. (2020). Labeling trick: A theory of using graph neural networks for multi-node representation learning. In Neural information processing systems.
Zhao, L., Jin, W., Akoglu, L., & Shah, N. (2022). From stars to subgraphs: Uplifting any GNN with local structure awareness. In International conference on learning representations. Retrieved from https://openreview.net/forum?id=Mspk_WYKoEH
Zhao, T., Yang, C., Li, Y., Gan, Q., Wang, Z., Liang, F., … Shi, C. (2022). Space4HGNN: A novel, modularized and reproducible platform to evaluate heterogeneous graph neural network. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.
Zhou, T., Lü, L., & Zhang, Y.-C. (2009). Predicting missing links via local information. The European Physical Journal B, 71, 623–630.